Predictions of hydrological models should be probabilistic in nature. Our aim is to introduce a method that estimates directly the uncertainty of hydrological simulations using expectiles, thus complementing previous quantile-based direct approaches as well as generalizing mean-based approaches. Expectiles are new risk measures in hydrology. Compared to quantiles that use information of the frequency of process realizations over a specified value, expectiles use additional information of the magnitude of the exceedances over the specified value. Expectiles are least square analogues of quantiles and can characterize the probability distribution in much the same way as quantiles do. Moreover, the mean of the probability distribution is the special case of the expectile at level 0.5. To this end, we propose calibrating hydrological models using the expectile loss function, which is strictly consistent for expectiles. We apply our method to 511 basins in contiguous US and deliver predictive expectiles of hydrological simulations with the GR4J, GR5J and GR6J hydrological models at expectile levels 0.5, 0.9, 0.95 and 0.975. An honest assessment empirically proves that the GR6J model outperforms the other two models at all expectile levels. Great opportunities are offered for moving beyond the mean in hydrological modelling by simply adjusting the objective function.
翻译:对水文模型的预测应当是概率性的。 我们的目标是采用一种方法,直接估计水文模拟的不确定性,使用预期值,从而补充以前基于孔数的直接方法和普遍基于平均值的方法。 期望是水文中新的风险措施。 与使用过程实现频率超过特定值的信息的定量相比,预期使用超出特定值的更多信息,预期使用超出指定值的幅度的更多信息。 期望是最小量的最小类比,并且可以以与量化值相同的方式对概率分布进行描述。 此外,概率分布的平均值是0.5级以前基于孔数的直接方法和一般基于平均值的方法的特殊案例。 为此,我们提议使用预期损耗功能来校准水文模型,这种功能对预期值严格一致。 我们将我们的方法应用于邻近的美国511个流域,并用GR4J、GR5J和GR6J等预测性水文模拟的预测性预测性预期值与预测性数值相比最小值水平为0.5、0.9、0.95和0.975级的概率分布值。 而在0.5级的模型上,在最大轨道模型上进行的所有实验性调整都表明,GRRRFA模型是超出其他平均水平。