Indoor robotics localization, navigation, and interaction heavily rely on scene understanding and reconstruction. Compared to the monocular vision which usually does not explicitly introduce any geometrical constraint, stereo vision-based schemes are more promising and robust to produce accurate geometrical information, such as surface normal and depth/disparity. Besides, deep learning models trained with large-scale datasets have shown their superior performance in many stereo vision tasks. However, existing stereo datasets rarely contain the high-quality surface normal and disparity ground truth, which hardly satisfies the demand of training a prospective deep model for indoor scenes. To this end, we introduce a large-scale synthetic but naturalistic indoor robotics stereo (IRS) dataset with over 100K stereo RGB images and high-quality surface normal and disparity maps. Leveraging the advanced rendering techniques of our customized rendering engine, the dataset is considerably close to the real-world captured images and covers several visual effects, such as brightness changes, light reflection/transmission, lens flare, vivid shadow, etc. We compare the data distribution of IRS with existing stereo datasets to illustrate the typical visual attributes of indoor scenes. Besides, we present DTN-Net, a two-stage deep model for surface normal estimation. Extensive experiments show the advantages and effectiveness of IRS in training deep models for disparity estimation, and DTN-Net provides state-of-the-art results for normal estimation compared to existing methods.


翻译:室内机器人本地化、导航和互动在很大程度上依赖于对场景的了解和重建。与通常不明显引入任何几何限制的单眼视觉相比,基于立体视觉的计划更有希望和更加健全,能够产生准确的几何信息,如表面正常和深度/差异性等。此外,经过大规模数据集培训的深层学习模型在许多立体视觉任务中表现出了优异的性能。然而,现有的立体数据集很少包含高质量的表面正常和差异地面真理,这很难满足培训一个未来室内场景深层模型的需求。为此,我们引入了一个大型合成但自然主义的室内机器人立体立体立体(IRS)数据集,该数据集拥有100多K型立体RGB图像以及高质量的表面正常和差异性平面图。利用我们定制的成型成型成像机的高级成像技术,该数据集与真实世界所捕捉到的图像相当接近,并涵盖若干视觉效应,如亮度变化、光度反射/传输、透视光信号信号信号、生影等。我们将IRS的数据发布与现有的立体模型进行比较,以比较现有的内部机器人模型,以显示室内表面表面表面图像的典型的典型的正常视野模型,此外,我们展示的地面模型显示现有地面模型和地面图像的状态培训结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【精通OpenCV 4】Mastering OpenCV 4 - Third Edition 随书代码
专知会员服务
39+阅读 · 2019年11月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员