Deep Reinforcement Learning achieves very good results in domains where reward functions can be manually engineered. At the same time, there is growing interest within the community in using games based on Procedurally Content Generation (PCG) as benchmark environments since this type of environment is perfect for studying overfitting and generalization of agents under domain shift. Inverse Reinforcement Learning (IRL) can instead extrapolate reward functions from expert demonstrations, with good results even on high-dimensional problems, however there are no examples of applying these techniques to procedurally-generated environments. This is mostly due to the number of demonstrations needed to find a good reward model. We propose a technique based on Adversarial Inverse Reinforcement Learning which can significantly decrease the need for expert demonstrations in PCG games. Through the use of an environment with a limited set of initial seed levels, plus some modifications to stabilize training, we show that our approach, DE-AIRL, is demonstration-efficient and still able to extrapolate reward functions which generalize to the fully procedural domain. We demonstrate the effectiveness of our technique on two procedural environments, MiniGrid and DeepCrawl, for a variety of tasks.


翻译:深入强化学习在可以人工设计奖励功能的领域取得了非常好的成果;同时,社区内对使用基于程序内容生成(PCG)的游戏作为基准环境的兴趣日益浓厚,因为这种类型的环境对研究超配和广化受域变换的物剂来说是完美的;反强化学习(IRL)可以取代专家演示的奖励功能外推法,即使对高维问题也是如此,但是没有将这些技术应用于程序产生的环境的实例;这主要是由于寻找一个良好的奖励模式所需的演示次数。我们建议采用基于反反强化学习的技术,这可以大大减少PCG游戏中专家演示的需要。通过使用一套有限的初始种子水平的环境,加上一些对稳定培训的修改,我们表明我们的DE-AIRL方法(DE-AIRL)具有示范效率,仍然能够将奖励功能外推至整个程序领域。我们展示了两种程序环境(MiniGrid和DeepClawl)的技术的有效性,以完成多种任务。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
206+阅读 · 2019年9月30日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年2月4日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
8+阅读 · 2019年1月8日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员