This paper presents AutoPatch, the first application of neural architecture search to the complex task of segmenting visual anomalies. Measurement of anomaly segmentation quality is challenging due to imbalanced anomaly pixels, varying region areas, and various types of anomalies. First, the weighted average precision (wAP) metric is proposed as an alternative to AUROC and AUPRO, which does not need to be limited to a specific maximum FPR. Second, a novel neural architecture search method is proposed, which enables efficient segmentation of visual anomalies without any training. By leveraging a pre-trained supernet, a black-box optimization algorithm can directly minimize FLOPS and maximize wAP on a small validation set of anomalous examples. Finally, compelling results on the widely studied MVTec [3] dataset are presented, demonstrating that AutoPatch outperforms the current state-of-the-art method PatchCore [12] with more than 18x fewer FLOPS, using only one example per anomaly type. These results highlight the potential of automated machine learning to optimize throughput in industrial quality control. The code for AutoPatch is available at: https://github.com/tommiekerssies/AutoPatch


翻译:本文介绍了AutoPatch,它是神经架构搜索应用于复杂的分割视觉异常任务的首个应用。由于异常像素不平衡、区域面积不同和各种类型的异常,测量异常分割质量是具有挑战性的。首先,我们提出了加权平均精度(wAP)指标作为替代AUROC和AUPRO的指标,该指标不需要限制于特定的最大FPR。其次,我们提出了一种新的神经架构搜索方法,它使得在没有任何训练的情况下能够高效地分割视觉异常。通过利用一个预训练的超网络,黑箱优化算法可以直接在少量的异常例子的验证集上最小化FLOPS并最大化wAP。最后,在广泛研究的MVTec [3]数据集上呈现了令人信服的结果,表明AutoPatch优于当前最先进的方法PatchCore [12],并且FLOPS减少了超过18倍,只使用每种异常类型的一个例子。这些结果突出了自动化机器学习在工业质量控制中优化吞吐量的潜力。AutoPatch的代码可在https://github.com/tommiekerssies/AutoPatch上获取。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
专知会员服务
59+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员