Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentation methods, however, produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for training GANs are under-explored compared to CNNs. In this work, we propose a new GAN architecture for augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative models. We show that the proposed GAN can be used to effectively augment data and improve classification accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc) on two different X-ray datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a GAN in detecting anomalies in X-ray images.
翻译:成功培训进化神经网络(CNNs)需要大量数据。由于小型数据集网络的广度不甚完善,数据增强技术通过更有效地利用现有培训数据,改善了神经网络的通用性。标准数据增强方法提供了有限的替代数据。基因反向网络(GANs)已经用于生成新数据并改进CNN的性能。然而,与CNN相比,用于培训GANs的数据增强技术的探索不足。在这项工作中,我们提出一个新的GAN结构,用于增加胸腔X射线,以便利用基因模型对肺炎和COVID-19进行半监督检测。我们表明,拟议的GAN可以有效地增加数据,提高肺炎和COVID-19胸X射线疾病分类精度。我们将我们的增强GAN模型与深电动GANGAN模型和两个不同的X光数据集的传统增强方法(rotate、缩影等)进行比较,并展示我们基于GAN的增强方法超过用于在Xray图像检测中训练GAN异常的其他增强方法。