Successful training of convolutional neural networks (CNNs) requires a substantial amount of data. With small datasets networks generalize poorly. Data Augmentation techniques improve the generalizability of neural networks by using existing training data more effectively. Standard data augmentation methods, however, produce limited plausible alternative data. Generative Adversarial Networks (GANs) have been utilized to generate new data and improve the performance of CNNs. Nevertheless, data augmentation techniques for training GANs are under-explored compared to CNNs. In this work, we propose a new GAN architecture for augmentation of chest X-rays for semi-supervised detection of pneumonia and COVID-19 using generative models. We show that the proposed GAN can be used to effectively augment data and improve classification accuracy of disease in chest X-rays for pneumonia and COVID-19. We compare our augmentation GAN model with Deep Convolutional GAN and traditional augmentation methods (rotate, zoom, etc) on two different X-ray datasets and show our GAN-based augmentation method surpasses other augmentation methods for training a GAN in detecting anomalies in X-ray images.


翻译:成功培训进化神经网络(CNNs)需要大量数据。由于小型数据集网络的广度不甚完善,数据增强技术通过更有效地利用现有培训数据,改善了神经网络的通用性。标准数据增强方法提供了有限的替代数据。基因反向网络(GANs)已经用于生成新数据并改进CNN的性能。然而,与CNN相比,用于培训GANs的数据增强技术的探索不足。在这项工作中,我们提出一个新的GAN结构,用于增加胸腔X射线,以便利用基因模型对肺炎和COVID-19进行半监督检测。我们表明,拟议的GAN可以有效地增加数据,提高肺炎和COVID-19胸X射线疾病分类精度。我们将我们的增强GAN模型与深电动GANGAN模型和两个不同的X光数据集的传统增强方法(rotate、缩影等)进行比较,并展示我们基于GAN的增强方法超过用于在Xray图像检测中训练GAN异常的其他增强方法。

0
下载
关闭预览

相关内容

数据增强在机器学习领域多指采用一些方法(比如数据蒸馏,正负样本均衡等)来提高模型数据集的质量,增强数据。
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
生成式对抗网络GAN异常检测
专知会员服务
117+阅读 · 2019年10月13日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
VIP会员
相关资讯
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
GAN猫的脸
机械鸡
11+阅读 · 2017年7月8日
Top
微信扫码咨询专知VIP会员