We present a framework that, given a set of skills a robot can perform, abstracts sensor data into symbols that we use to automatically encode the robot's capabilities in Linear Temporal Logic. We specify reactive high-level tasks based on these capabilities, for which a strategy is automatically synthesized and executed on the robot, if the task is feasible. If a task is not feasible given the robot's capabilities, we present two methods, one enumeration-based and one synthesis-based, for automatically suggesting additional skills for the robot or modifications to existing skills that would make the task feasible. We demonstrate our framework on a Baxter robot manipulating blocks on a table, a Baxter robot manipulating plates on a table, and a Kinova arm manipulating vials, with multiple sensor modalities, including raw images.
翻译:我们提出了一个框架,根据机器人能够执行的一套技能,将感应数据转换成我们用来在线性时空逻辑中自动编码机器人能力的符号。我们根据这些能力指定了反应性高级任务,如果任务可行,则在机器人身上自动合成和执行战略。如果任务不可行,我们提出两种方法,一种基于查点,一种基于合成,自动建议机器人的额外技能,或修改现有技能,使任务可行。我们展示了我们在一张桌子上的巴克斯特机器人操纵区块、一张桌子上的巴克斯特机器人操纵板块以及一个包括原始图像在内的多种传感器模式的基诺瓦臂操纵小瓶的框架。