The Lindblad master equation describes the evolution of a large variety of open quantum systems. An important property of some open quantum systems is the existence of decoherence-free subspaces. A quantum state from a decoherence-free subspace will evolve unitarily. However, there is no procedural and optimal method for constructing a decoherence-free subspace. In this paper, we develop tools for constructing decoherence-free stabilizer codes for open quantum systems governed by Lindblad master equation. This is done by pursuing an extension of the stabilizer formalism beyond the celebrated group structure of Pauli error operators. We then show how to utilize decoherence-free stabilizer codes in quantum metrology in order to attain the Heisenberg limit scaling with low computational complexity.
翻译:Lindblad 母方程式描述大量开放量子系统的演化。 一些开放量子系统的一个重要属性是存在不兼容的子空间。 一个不兼容的子空间的量子状态将单独演变。 但是,没有建立不兼容的子空间的程序和最佳方法。 在本文中, 我们开发了工具, 用于为由Lindblad 母方程式管理的开放量子系统构建不兼容性稳定器代码。 这样做的方法是将稳定剂形式主义扩展到保罗错误操作员的著名群体结构之外。 然后我们展示了如何在量子计量学中使用无兼容性稳定器代码, 以便以低计算复杂性实现海森堡极限。