We define a discrete-time Markov chain for abstract polymer models and show that under sufficient decay of the polymer weights, this chain mixes rapidly. We apply this Markov chain to polymer models derived from the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs. In this setting, Jenssen, Keevash and Perkins (2019) recently gave an FPTAS and an efficient sampling algorithm at sufficiently high fugacity and low temperature respectively. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. Our approach via the polymer model Markov chain circumvents the zero-free analysis and the generalization to complex parameters, and leads to a sampling algorithm with a fast running time of $O(n \log n)$ for the Potts model and $O(n^2 \log n)$ for the hard-core model, in contrast to typical running times of $n^{O(\log \Delta)}$ for algorithms based on Barvinok's polynomial interpolation method on graphs of maximum degree $\Delta$. We finally combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin Glauber dynamics restricted to even and odd or `red' dominant portions of the respective state spaces.
翻译:我们为抽象聚合物模型定义了离散时间的Markov链条, 并显示在聚合物重量足够衰减的情况下, 这一链条会迅速混合。 我们将这个Markov链条应用到从封闭度( 双叶) 扩展图中硬核和铁磁波模型产生的聚合物模型。 在此背景下, Jenssen、 Kevash 和 Perkins (2019年) 最近给出了一个FPTAS 和高效的取样算法, 分别达到足够高的烟雾度和低温。 它们的方法是使用聚集扩展以获得聚合物模型分区功能的复杂零级区域, 然后使用Barvinok 的多元和铁磁电磁共振元间混合模型来接近这一分区功能。 我们通过聚合模型的这一方法绕过了零分析, 和对复杂参数的概括化, 并导致一种快速运行时间为美元( n) 美元( log n) 的取样算法, 和 美元( n) (n%2\ log n) 等 用于硬度模型的分解的分解区域区域区域,, 和 美元(ralalal- dalalalalalalalalalalalalalalal) ralalalal maxal ral mal mal maxal maxx 。