In this paper, we investigate the problem of statistical inference of the model parameters in stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search directions. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the function query complexity and the distribution of search directions. The distributional result reflects the trade-off between statistical efficiency and function query complexity. We further analyze the choices of random search directions to minimize the asymptotic covariance matrix, and conclude that the optimal search direction depends on the optimality criteria with respect to different summary statistics of the Fisher information matrix. Based on the asymptotic distribution result, we conduct one-pass statistical inference by providing two constructions of valid confidence intervals. We provide numerical experiments verifying our theoretical results with the practical effectiveness of the procedures.
翻译:在本文中,我们通过使用随机搜索方向的Kiefer-Wolfowitz算法,调查对随机搜索方向的随机优化问题模型参数的统计推断问题。我们首先介绍Polyak-Ruppert-avecing type Kiefer-Wolfowitz(AKW)测量器的无症状分布,其无症状共变量矩阵取决于功能查询复杂性和搜索方向的分布。分布结果反映了统计效率和功能查询复杂性之间的取舍。我们进一步分析随机搜索方向的选择,以尽量减少无症状共变量矩阵,并得出结论,最佳搜索方向取决于渔业信息矩阵不同汇总统计的最佳性标准。根据无症状分布结果,我们通过提供两种有效的信任间隔来进行一次性统计推断。我们提供数字实验,以核实我们的理论结果和程序的实际有效性。