Automatic and precise fitness activity recognition can be beneficial in aspects from promoting a healthy lifestyle to personalized preventative healthcare. While IMUs are currently the prominent fitness tracking modality, through iMove, we show bio-impedence can help improve IMU-based fitness tracking through sensor fusion and contrastive learning.To evaluate our methods, we conducted an experiment including six upper body fitness activities performed by ten subjects over five days to collect synchronized data from bio-impedance across two wrists and IMU on the left wrist.The contrastive learning framework uses the two modalities to train a better IMU-only classification model, where bio-impedance is only required at the training phase, by which the average Macro F1 score with the input of a single IMU was improved by 3.22 \% reaching 84.71 \% compared to the 81.49 \% of the IMU baseline model. We have also shown how bio-impedance can improve human activity recognition (HAR) directly through sensor fusion, reaching an average Macro F1 score of 89.57 \% (two modalities required for both training and inference) even if Bio-impedance alone has an average macro F1 score of 75.36 \%, which is outperformed by IMU alone. In addition, similar results were obtained in an extended study on lower body fitness activity classification, demonstrating the generalisability of our approach.Our findings underscore the potential of sensor fusion and contrastive learning as valuable tools for advancing fitness activity recognition, with bio-impedance playing a pivotal role in augmenting the capabilities of IMU-based systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员