Understanding the underlying causes of maternal death across all regions of the world is essential to inform policies and resource allocation to reduce the mortality burden. However, in many countries of the world there exists very little data on the causes of maternal death, and data that do exist do not capture the entire population of risk. In this paper we present a Bayesian hierarchical multinomial model to estimate maternal cause of death distributions globally, regionally and for all countries worldwide. The framework combines data from various sources to inform estimates, including data from civil registration and vital systems, smaller-scale surveys and studies, and high-quality data from confidential enquiries and surveillance systems. The framework accounts of varying data quality and coverage, and allows for situations where one or more causes of death are missing. We illustrate the results of the model on three case study countries that have different data availability situations: Canada, Nigeria and the United States.


翻译:了解世界各区域孕产妇死亡的根本原因,对于为减少死亡负担提供政策和资源分配信息至关重要,然而,世界上许多国家几乎没有关于孕产妇死亡原因的数据,现有的数据无法涵盖所有风险人口。我们在本文件中提出了一个巴伊西亚等级多民族模型,用以估计全球、区域和全世界所有国家的孕产妇死亡原因分布情况。框架综合了各种来源的数据,为估计数提供信息,包括民事登记和生命系统的数据、小规模调查和研究以及保密查询和监测系统的高质量数据。数据质量和覆盖范围各不相同的框架说明,并允许出现一个或多个死亡原因缺失的情况。我们介绍了三个有不同数据提供情况的案例研究国家:加拿大、尼日利亚和美国的模型结果。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【经典书】Python金融大数据分析,566页pdf
专知会员服务
122+阅读 · 2020年8月1日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
0+阅读 · 2021年3月11日
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员