We introduce DeepJoin, an automated approach to generate high-resolution repairs for fractured shapes using deep neural networks. Existing approaches to perform automated shape repair operate exclusively on symmetric objects, require a complete proxy shape, or predict restoration shapes using low-resolution voxels which are too coarse for physical repair. We generate a high-resolution restoration shape by inferring a corresponding complete shape and a break surface from an input fractured shape. We present a novel implicit shape representation for fractured shape repair that combines the occupancy function, signed distance function, and normal field. We demonstrate repairs using our approach for synthetically fractured objects from ShapeNet, 3D scans from the Google Scanned Objects dataset, objects in the style of ancient Greek pottery from the QP Cultural Heritage dataset, and real fractured objects. We outperform three baseline approaches in terms of chamfer distance and normal consistency. Unlike existing approaches and restorations using subtraction, DeepJoin restorations do not exhibit surface artifacts and join closely to the fractured region of the fractured shape. Our code is available at: https://github.com/Terascale-All-sensing-Research-Studio/DeepJoin.
翻译:我们引入了DeepJoin, 这是一种利用深神经网络对断裂形状进行高分辨率修复的自动化方法。 进行自动形状修复的现有方法专门对对称天体进行操作, 需要一个完整的代理形状, 或预测使用低分辨率的氧化物的修复形状, 物理修复过于粗糙。 我们通过推断一个相应的完整形状和从输入断裂形状的断裂表面形成一个高分辨率的恢复形状。 我们为断裂形状修复提供了一个新型的隐含形状表示, 它将占用功能、 签名距离功能和正常字段结合起来。 我们展示了对来自 ShapeNet 的合成断裂的物体、 谷歌扫描天体数据集的3D 扫描、 QP 文化遗产数据集中古希腊陶器风格的物体以及真实断裂的物体的修复方法。 我们在红外距离和正常一致性方面超越了三个基线方法。 我们与现有的方法和恢复方法不同, DeepJoin 恢复没有展示表面的工艺品, 并且与断裂形状的断裂区域紧密相连。 我们的代码可用于: http://sgistria- Jostus- restarigistria- restarib.