Automated systems that negotiate with humans have broad applications in pedagogy and conversational AI. To advance the development of practical negotiation systems, we present CaSiNo: a novel corpus of over a thousand negotiation dialogues in English. Participants take the role of campsite neighbors and negotiate for food, water, and firewood packages for their upcoming trip. Our design results in diverse and linguistically rich negotiations while maintaining a tractable, closed-domain environment. Inspired by the literature in human-human negotiations, we annotate persuasion strategies and perform correlation analysis to understand how the dialogue behaviors are associated with the negotiation performance. We further propose and evaluate a multi-task framework to recognize these strategies in a given utterance. We find that multi-task learning substantially improves the performance for all strategy labels, especially for the ones that are the most skewed. We release the dataset, annotations, and the code to propel future work in human-machine negotiations: https://github.com/kushalchawla/CaSiNo


翻译:与人类谈判的自动化系统在教学学和对话性AI中具有广泛的应用。为了推动实际谈判系统的发展,我们以英语介绍CaSiNo:一千多个谈判对话的新材料。参与者扮演营邻居的角色,为即将到来的行程谈判食物、水和木柴包。我们的设计结果在语言上丰富多样的谈判,同时保持一个可移动、封闭的环境。在人类谈判文献的启发下,我们提出说服策略并进行相关分析,以了解对话行为如何与谈判表现相联系。我们进一步提议和评估一个多任务框架,以在特定的语言中承认这些战略。我们发现,多任务学习极大地改善了所有战略标签的性能,特别是最偏斜的标签。我们发布了数据集、说明以及推进人类机械谈判未来工作的代码:https://github.com/kushalchawla/CaSiNo。我们发现,多任务学习极大地改善了所有战略标签的性能,特别是最偏斜的标签。我们发布了数据集、说明和代码,以推进人类机械谈判的未来工作:https://github.com/kushalchawla/CaSiNo。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
33+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员