Graph convolutional learning has led to many exciting discoveries in diverse areas. However, in some applications, traditional graphs are insufficient to capture the structure and intricacies of the data. In such scenarios, multigraphs arise naturally as discrete structures in which complex dynamics can be embedded. In this paper, we develop convolutional information processing on multigraphs and introduce convolutional multigraph neural networks (MGNNs). To capture the complex dynamics of information diffusion within and across each of the multigraph's classes of edges, we formalize a convolutional signal processing model, defining the notions of signals, filtering, and frequency representations on multigraphs. Leveraging this model, we develop a multigraph learning architecture, including a sampling procedure to reduce computational complexity. The introduced architecture is applied towards optimal wireless resource allocation and a hate speech localization task, offering improved performance over traditional graph neural networks.
翻译:图表共进学习在不同领域导致了许多令人振奋的发现。 但是,在某些应用中,传统图表不足以捕捉数据的结构和复杂性。 在这种假设中,多面图自然地成为可以嵌入复杂动态的离散结构。在本文中,我们开发了多面图的革命信息处理,并引入了革命多面神经网络(MGNNs )。为了捕捉多面图各个边缘类别内部和之间信息传播的复杂动态,我们正式确定了共进信号处理模型,确定了多面图上的信号、过滤和频率表达概念。利用这一模型,我们开发了一个多面图学习结构,包括一个抽样程序,以减少计算复杂性。引入的架构被用于优化无线资源分配和仇恨言论本地化任务,为传统图形神经网络提供更好的性能。