Consider two stationary time series with heavy-tailed marginal distributions. We aim to detect whether they have a causal relation, that is, if a change in one of them causes a change in the other. Usual methods for causality detection are not well suited if the causal mechanisms only manifest themselves in extremes. This paper aims to detect the causal relations in extremes between time series. We define the so-called causal tail coefficient for time series, which, under some assumptions, correctly detects the asymmetrical causal relations between extremes of the time series. The advantage is that this method works even if nonlinear relations and common ancestors are present. Moreover, we mention how our method can help detect a time delay between the two time series. We describe some of its asymptotic properties and show how it performs on some simulations. Finally, we show how this method works on space-weather and hydro-meteorological data sets.
翻译:考虑两个固定时间序列, 带有重尾边缘分布。 我们的目标是检测它们是否有因果关系, 也就是说, 如果其中一个变化导致另一个变化。 如果因果关系机制只是表现在极端状态中, 通常的因果关系检测方法并不十分合适 。 本文旨在检测时间序列之间的极端因果关系 。 我们定义了时间序列的所谓因果尾量系数, 在某些假设下, 正确检测了时间序列极端状态之间的不对称因果关系 。 优势在于这种方法即使存在非线性关系和共同祖先, 也有效 。 此外, 我们提到我们的方法如何帮助检测两个时间序列之间的时间延迟 。 我们描述了它的一些非线性特性, 并展示它在某些模拟中的表现 。 最后, 我们展示了这个方法如何在空间- 天气和水文气象数据集中发挥作用 。