Gathering manually annotated images for the purpose of training a predictive model is far more challenging in the medical domain than for natural images as it requires the expertise of qualified radiologists. We therefore propose to take advantage of past radiological exams (specifically, knee X-ray examinations) and formulate a framework capable of learning the correspondence between the images and reports, and hence be capable of generating diagnostic reports for a given X-ray examination consisting of an arbitrary number of image views. We demonstrate how aggregating the image features of individual exams and using them as conditional inputs when training a language generation model results in auto-generated exam reports that correlate well with radiologist-generated reports.


翻译:为了培训预测模型而人工收集附加说明的图像,在医学领域比自然图像更具挑战性,因为它需要合格的放射学家的专门知识,因此我们提议利用过去的放射测试(特别是膝部X光检查),并制定一个能够学习图像与报告之间通信的框架,从而能够为特定X光检查产生诊断报告,这种检查包含任意数量的图像视图。我们展示了在培训语言生成模型后,如何将单个测试的图像特征汇总起来,并在培训与放射学家生成的报告密切相关的自动生成的测试报告时将其用作有条件的投入。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【CIKM2020】多模态知识图谱推荐系统,Multi-modal KG for RS
专知会员服务
97+阅读 · 2020年8月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2018年11月7日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
【CIKM2020】多模态知识图谱推荐系统,Multi-modal KG for RS
专知会员服务
97+阅读 · 2020年8月24日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员