In this work, we introduce and study a class of Deep Neural Networks (DNNs) in continuous-time. The proposed architecture stems from the combination of Neural Ordinary Differential Equations (Neural ODEs) with the model structure of recently introduced Recurrent Equilibrium Networks (RENs). We show how to endow our proposed NodeRENs with contractivity and dissipativity -- crucial properties for robust learning and control. Most importantly, as for RENs, we derive parametrizations of contractive and dissipative NodeRENs which are unconstrained, hence enabling their learning for a large number of parameters. We validate the properties of NodeRENs, including the possibility of handling irregularly sampled data, in a case study in nonlinear system identification.
翻译:在本文中,我们引入并研究了一类连续时间的深度神经网络。所提出的体系结构是神经常微分方程和最近引入的循环平衡网络(RENs)模型结构的组合。我们展示了如何赋予所提出的 NodeRENs 收缩和耗散的特性-这对于强健学习和控制是至关重要的。最重要的是,就像 RENs 一样,我们衍生了收缩和耗散的无约束形式的 NodeRENs 参数化,从而使其能够学习大量的参数。我们验证了 NodeRENs 的属性,包括处理非规则抽样数据的可能性,在非线性系统识别的案例研究中。