This paper is written for a Festschrift in honour of Professor Marc Hallin and it proposes some developments on quantile regression. We connect our investigation to Marc's scientific production and we present some theoretical and methodological advances for quantiles estimation in non standard settings. We split our contributions in two parts. The first part is about conditional quantiles estimation for nonstationary time series: our approach combines local stationarity for Markov processes with quantile regression. The second part is about conditional quantiles estimation for the analysis of multivariate independent data in the presence of possibly large dimensional covariates: our procedure combines optimal transport theory with quantile regression forests. Monte Carlo studies illustrate numerically the performance of our methods and compare them to extant methods. The codes needed to replicate our results are available on our $\mathtt{GitHub}$ pages.
翻译:分位数回归的一些新颖方面:局部平稳性、随机森林和最优输运
翻译后的摘要:
本文是为纪念马克·哈林教授而撰写的,提出了分位数回归的一些发展。我们将研究与马克的科学产出联系起来,并提出了一些非标准情景下分位数估计的理论和方法上的进展。我们将我们的贡献分为两部分。第一部分是关于非平稳时间序列的条件分位数估计:我们的方法将马尔科夫过程的局部平稳性与分位数回归相结合。第二部分是关于在存在可能具有大维协变量的情况下,通过优化输运理论与分位数回归森林相结合来分析多元独立数据的条件分位数估计:我们的程序。蒙特卡洛研究为我们的方法的数量表现提供了数值验证,并将其与现有方法进行了比较。复制我们的结果所需的代码在我们的GitHub页面上可用。