项目名称: 毫米波云雷达和微波辐射计联合遥感云粒子谱参数的研究

项目编号: No.41475034

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 天文学、地球科学

项目作者: 黄兴友

作者单位: 南京信息工程大学

项目金额: 110万元

中文摘要: 云不仅是发生降水的前提,也是影响到达地面的太阳短波辐射通量和地表外逸长波辐射通量的最重要因子,是气候变化研究和天气预报的重要参量。云的有效半径和数浓度不仅反映了云的发展演变状态、也决定了对太阳辐射的反射率,云水路径决定了可见光谱段的光学厚度。如果知道了云的粒子谱分布和云层厚度,则可以得到云粒子的数浓度、有效半径和云层的云水路径。所以,反演云粒子谱有重要的意义。但云悬浮在高空且云粒子很小,造成了直接探测的高成本和技术困难,难以获得实时的云参数。地基毫米波雷达可以探测云层的反射率因子、垂直速度和速度谱宽;微波辐射计可以反演出云水总量。在假定云粒子呈伽马分布或对数正态分布的基础上,综合利用云的反射率因子、云水总量等数据,可以反演出云的粒子谱参数和云水路径。本研究利用地基毫米波云雷达和微波辐射计联合测云,不仅可以反演出云粒子谱等参数,也可以准确地监测云的发展演变,为云物理研究等提供基础数据。

中文关键词: 大气探测;大气遥感;反演算法

英文摘要: Cloud is not only the precursor of precipitation, but also a key factor affecting the surface downward solar radiation and surface outgoing long wave radiation, and therefore is an important factor for climate change research and weather forecast. Cloud effective radius and number concentration can reflect cloud evolution status and the albedo to solar radiation. Cloud liquid water path determines optical depth in visible spectrum. If cloud particle size distribution and depth of cloud layer are known, cloud number concentration, effective radius and liquid water path can easily be calculated. The retrieval of cloud particle distribution is of great importance. Floating highly above ground surface, cloud parameters become hard to be measured due to technique issues and financial cost. Ground-based millimeter-wave cloud radar can measure cloud reflectivity factor, vertical velocity and spectrum width. Microwave radiometer can provide cloud water content. With the assumption of Γ-distribution or lognormal distribution of the cloud particle sizes, the parameters of cloud size distribution and cloud liquid water path can be retrieved by using cloud reflectivity from radar, and cloud water content from microwave radiometer. The research will use synergistic measurements from ground-based millimeter-wave cloud radar and microwave radiometer, to retrieve cloud particle distribution and other parameters for monitoring cloud evolution and providing essential data to the study of cloud physics.

英文关键词: Atmospheric sounding;Atmospheric remote sensing;Retrieval algorithm

成为VIP会员查看完整内容
0

相关内容

《2021-2022全球计算力指数评估报告》,46页pdf
专知会员服务
74+阅读 · 2022年3月25日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
38+阅读 · 2021年8月31日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
65+阅读 · 2021年5月3日
专知会员服务
72+阅读 · 2021年3月23日
最新《时序数据分析》书稿,512页pdf
专知会员服务
113+阅读 · 2020年12月25日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
29+阅读 · 2020年10月9日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
实战|手把手教你实现图象边缘检测!
全球人工智能
10+阅读 · 2018年1月19日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
14+阅读 · 2021年6月30日
小贴士
相关主题
相关VIP内容
《2021-2022全球计算力指数评估报告》,46页pdf
专知会员服务
74+阅读 · 2022年3月25日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
38+阅读 · 2021年8月31日
专知会员服务
22+阅读 · 2021年8月23日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
65+阅读 · 2021年5月3日
专知会员服务
72+阅读 · 2021年3月23日
最新《时序数据分析》书稿,512页pdf
专知会员服务
113+阅读 · 2020年12月25日
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
专知会员服务
29+阅读 · 2020年10月9日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
14+阅读 · 2021年6月30日
微信扫码咨询专知VIP会员