Intelligent recommendation and reminder systems are the need of the fast-pacing life. Current intelligent systems such as Siri, Google Assistant, Microsoft Cortona, etc., have limited capability. For example, if you want to wake up at 6 am because you have an upcoming trip, you have to set the alarm manually. Besides, these systems do not recommend or remind what else to carry, such as carrying an umbrella during a likely rain. The present work proposes a system that takes an email as input and returns a recommendation-cumreminder list. As a first step, we parse the emails, recognize the entities using named entity recognition (NER). In the second step, information retrieval over the web is done to identify nearby places, climatic conditions, etc. Imperative sentences from the reviews of all places are extracted and passed to the object extraction module. The main challenge lies in extracting the objects (items) of interest from the review. To solve it, a modified Machine Reading Comprehension-NER (MRC-NER) model is trained to tag objects of interest by formulating annotation rules as a query. The objects so found are recommended to the user one day in advance. The final reminder list of objects is pruned by our proposed model for tracking objects kept during the "packing activity." Eventually, when the user leaves for the event/trip, an alert is sent containing the reminding list items. Our approach achieves superior performance compared to several baselines by as much as 30% on recall and 10% on precision.
翻译:智能建议和提醒系统是快速生活的需要。 当前智能系统, 如 Siri、 Google A助理、 Microsoft Cortona 等智能系统, 能力有限。 例如, 如果您想要在上午6点醒来, 因为即将要出行, 您必须手动设置提醒。 此外, 这些系统不建议或提醒其它要携带的东西, 比如在可能下雨时携带伞。 目前的工作建议使用电子邮件作为输入并返回建议递增列表的系统。 作为第一步, 我们分析电子邮件, 识别实体名称识别( NER ) 。 第二步是完成网络上的信息检索, 以识别附近的物体、 气候条件等。 对所有地方的审查的提示性句将被提取并传送到对象提取模块。 主要挑战在于从审查中提取感兴趣的对象( 项) 。 要解决这个问题, 一个修改过的机器读取- NER (MRC- NER) 模型将用来标记兴趣对象, 设计一个注解规则, 使用名称实体识别( NER) 。 在第二步中, 通过网络上的信息检索, 来识别附近的物体, 将最终的提醒号 放在一个用户活动列表中, 。 在一天里程中, 的提醒中, 在最后的提醒里程中, 里程里程中, 里程里程中, 里程里程里程里程里程中, 里程里程里程里程里程里程中, 里程里程里程中, 里程中, 里程中, 里程中, 里程里程里程里程里程里程里程里程里程里程里程里程里程里程里程中, 。