Deep neural network (DNN) usually learns the target function from low to high frequency, which is called frequency principle or spectral bias. This frequency principle sheds light on a high-frequency curse of DNNs -- difficult to learn high-frequency information. Inspired by the frequency principle, a series of works are devoted to develop algorithms for overcoming the high-frequency curse. A natural question arises: what is the upper limit of the decaying rate w.r.t. frequency when one trains a DNN? In this work, our theory, confirmed by numerical experiments, suggests that there is a critical decaying rate w.r.t. frequency in DNN training. Below the upper limit of the decaying rate, the DNN interpolates the training data by a function with a certain regularity. However, above the upper limit, the DNN interpolates the training data by a trivial function, i.e., a function is only non-zero at training data points. Our results indicate a better way to overcome the high-frequency curse is to design a proper pre-condition approach to shift high-frequency information to low-frequency one, which coincides with several previous developed algorithms for fast learning high-frequency information. More importantly, this work rigorously proves that the high-frequency curse is an intrinsic difficulty of DNNs.


翻译:深神经网络通常从低频到高频学习目标函数, 称为频率原则或光谱偏差。 这个频率原则揭示了DNN的高频诅咒 -- -- 很难学习高频信息。 受频率原则的启发, 一系列工作致力于开发克服高频诅咒的算法。 自然产生的一个问题是: 当一个培训 DNN 数据点时, 衰减率的上限是多少 w.r.t. 频率? 在这项工作中, 我们的理论得到数字实验的证实, 表明在 DNN 培训中存在一种非常严重的 w.r.t. 频率的衰变率。 在衰变率的上限之外, DNN 中间将培训数据以一定的规律化为函数。 然而, 在高于上限的情况下, DNN 将培训数据以一个微不足道的函数来循环。 也就是说, 在一个培训数据点上, 一个函数是非零的。 我们的结果表明, 克服高频诅咒的更好的方法是设计一个适当的预设方法, 将高频信息转换为低频信息的频率信息。 DNNNV 高频级的快速解释。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
0+阅读 · 2021年7月15日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月15日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
5+阅读 · 2020年3月16日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2020年2月5日
VIP会员
相关资讯
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
相关论文
Arxiv
0+阅读 · 2021年7月15日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月15日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
5+阅读 · 2020年3月16日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
3+阅读 · 2020年2月5日
Top
微信扫码咨询专知VIP会员