Sparse representation has been widely used in data compression, signal and image denoising, dimensionality reduction and computer vision. While overcomplete dictionaries are required for sparse representation of multidimensional data, orthogonal bases represent one-dimensional data well. In this paper, we propose a data-driven sparse representation using orthonormal bases under the lossless compression constraint. We show that imposing such constraint under the Minimum Description Length (MDL) principle leads to a unique and optimal sparse representation for one-dimensional data, which results in discriminative features useful for data discovery.
翻译:数据压缩、信号和图像解密、维维度减低和计算机视觉中广泛使用了粗略的表示法;虽然对多维数据很少的表示需要过于完整的字典,但正纵基代表一维数据;在本文件中,我们提议在无损压缩制约下使用正异基进行数据驱动的表示法;我们表明,根据最低描述长度原则施加这种限制会导致单维数据的独特和最佳的表达法,从而产生有助于数据发现的歧视特征。