Causal inference in longitudinal observational health data often requires the accurate estimation of treatment effects on time-to-event outcomes in the presence of time-varying covariates. To tackle this sequential treatment effect estimation problem, we have developed a causal dynamic survival (CDS) model that uses the potential outcomes framework with the recurrent sub-networks with random seed ensembles to estimate the difference in survival curves of its confidence interval. Using simulated survival datasets, the CDS model has shown good causal effect estimation performance across scenarios of sample dimension, event rate, confounding and overlapping. However, increasing the sample size is not effective to alleviate the adverse impact from high level of confounding. In two large clinical cohort studies, our model identified the expected conditional average treatment effect and detected individual effect heterogeneity over time and patient subgroups. CDS provides individualised absolute treatment effect estimations to improve clinical decisions.
翻译:纵向观测健康数据的因果推断往往要求准确估计治疗对时间到活动结果的影响,同时有时间变化的共差。为了解决这一连续治疗效果估计问题,我们开发了一个因果动态生存模型(CDS),利用潜在结果框架,与经常的子网络一起使用随机种子集合的随机子网络来估计其信任期生存曲线的差异。使用模拟生存数据集,CDS模型显示了良好的因果效果估计,在抽样规模、事件率、混杂和重叠等不同情景中,估计了因果效果。然而,增加样本规模对于减轻高度混杂的不利影响并不有效。在两个大型临床群研究中,我们模型确定了预期的有条件平均治疗效果,并检测出在时间和病人分组中的个体效应。CDS提供了个性绝对治疗效果估计,以改善临床决定。