Reed-Muller codes belong to the family of affine-invariant codes. As such codes they have a defining set that determines them uniquely, and they are extensions of cyclic group codes. In this paper we identify those cyclic codes with multidimensional abelian codes and we use the techniques introduced in \cite{BS} to construct information sets for them from their defining set. For first and second order Reed-Muller codes, we describe a direct method to construct information sets in terms of their basic parameters.
翻译:暂无翻译