It has been reported that clustering-based topic models, which cluster high-quality sentence embeddings with an appropriate word selection method, can generate better topics than generative probabilistic topic models. However, these approaches suffer from the inability to select appropriate parameters and incomplete models that overlook the quantitative relation between words with topics and topics with text. To solve these issues, we propose graph to topic (G2T), a simple but effective framework for topic modelling. The framework is composed of four modules. First, document representation is acquired using pretrained language models. Second, a semantic graph is constructed according to the similarity between document representations. Third, communities in document semantic graphs are identified, and the relationship between topics and documents is quantified accordingly. Fourth, the word--topic distribution is computed based on a variant of TFIDF. Automatic evaluation suggests that G2T achieved state-of-the-art performance on both English and Chinese documents with different lengths. Human judgements demonstrate that G2T can produce topics with better interpretability and coverage than baselines. In addition, G2T can not only determine the topic number automatically but also give the probabilistic distribution of words in topics and topics in documents. Finally, G2T is publicly available, and the distillation experiments provide instruction on how it works.


翻译:报告指出,基于聚类的主题模型使用适当的词选择方法来聚类高质量的句子嵌入,可以生成比生成概率主题模型更好的主题。然而,这些方法在选择适当的参数和忽略单词与主题以及主题与文本之间的定量关系的不完整模型方面存在问题。为了解决这些问题,我们提出了基于图的主题(G2T)简单而有效的框架进行主题建模。该框架由四个模块组成。首先,使用预训练语言模型获得文档表示形式。第二,根据文档表示之间的相似性构建语义图。第三,识别文档语义图中的社区,并相应地量化主题与文档之间的关系。第四,基于TFIDF的变体计算单词 - 主题分布。自动评估表明,G2T在不同长度的英文和中文文档上均达到了最先进的性能。人类判断证明G2T可以生成具有更好解释性和覆盖范围的主题比基线方法。此外,G2T不仅可以自动确定主题数,而且还可以给出单词在主题中的概率分布以及主题在文档中的概率分布。最后,G2T可公开使用,并且精炼实验提供了关于其使用方法的说明。

0
下载
关闭预览

相关内容

AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ERNIE Tutorial(论文笔记 + 实践指南)
AINLP
30+阅读 · 2019年8月28日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关VIP内容
AAAI 2022 | 基于预训练-微调框架的图像差异描述任务
专知会员服务
17+阅读 · 2022年2月26日
【ICML2020】统一预训练伪掩码语言模型
专知会员服务
25+阅读 · 2020年7月23日
六篇 EMNLP 2019【图神经网络(GNN)+NLP】相关论文
专知会员服务
71+阅读 · 2019年11月3日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ERNIE Tutorial(论文笔记 + 实践指南)
AINLP
30+阅读 · 2019年8月28日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
综述:Image Caption 任务之语句多样性
PaperWeekly
22+阅读 · 2018年11月30日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员