Photovoltaic cells are electronic devices that convert light energy to electricity, forming the backbone of solar energy harvesting systems. An essential step in the manufacturing process for photovoltaic cells is visual quality inspection using electroluminescence imaging to identify defects such as cracks, finger interruptions, and broken cells. A big challenge faced by industry in photovoltaic cell visual inspection is the fact that it is currently done manually by human inspectors, which is extremely time consuming, laborious, and prone to human error. While deep learning approaches holds great potential to automating this inspection, the hardware resource-constrained manufacturing scenario makes it challenging for deploying complex deep neural network architectures. In this work, we introduce CellDefectNet, a highly efficient attention condenser network designed via machine-driven design exploration specifically for electroluminesence-based photovoltaic cell defect detection on the edge. We demonstrate the efficacy of CellDefectNet on a benchmark dataset comprising of a diversity of photovoltaic cells captured using electroluminescence imagery, achieving an accuracy of ~86.3% while possessing just 410K parameters (~13$\times$ lower than EfficientNet-B0, respectively) and ~115M FLOPs (~12$\times$ lower than EfficientNet-B0) and ~13$\times$ faster on an ARM Cortex A-72 embedded processor when compared to EfficientNet-B0.
翻译:光伏电池是一个巨大的挑战。光伏电池工业在光伏电池视觉检查中面临的一个重大挑战是,它目前是由人类检查员手动完成的,它耗时非常耗时、费力和容易发生人类错误。虽然深层次的学习方法具有实现检查自动化的巨大潜力,但硬件资源限制的制造方案却对部署复杂的深层神经网络结构提出了挑战。在这项工作中,我们引入了CellDefectNet,这是一个高效的注意浓缩器网络,通过机器驱动的设计勘探,专门设计在边缘进行基于电光的光电电池缺陷检测。我们展示了细胞DeffectNet在基准数据集上的功效,该数据库由使用电光照图像捕获的多种光电池组成,实现了~86.3 % 的精确度,而硬件资源限制的制造方案则对部署复杂的深层神经网络结构提出了挑战。我们引入了CellDeffectNetNetNetNet,这是一个高效的电压电压电压电压电压电压电压器网络网络网络网络网络网络,比A-115-MOPxximme-timate A-115-M-MLs-12-Bs 和高效的电压系统,比N-115-M-Bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx