Embedded devices are increasingly ubiquitous and their importance is hard to overestimate. While they often support safety-critical functions (e.g., in medical devices and sensor-alarm combinations), they are usually implemented under strict cost/energy budgets, using low-end microcontroller units (MCUs) that lack sophisticated security mechanisms. Motivated by this issue, recent work developed architectures capable of generating Proofs of Execution (PoX) for the correct/expected software in potentially compromised low-end MCUs. In practice, this capability can be leveraged to provide "integrity from birth" to sensor data, by binding the sensed results/outputs to an unforgeable cryptographic proof of execution of the expected sensing process. Despite this significant progress, current PoX schemes for low-end MCUs ignore the real-time needs of many applications. In particular, security of current PoX schemes precludes any interrupts during the execution being proved. We argue that lack of asynchronous capabilities (i.e., interrupts within PoX) can obscure PoX usefulness, as several applications require processing real-time and asynchronous events. To bridge this gap, we propose, implement, and evaluate an Architecture for Secure Asynchronous Processing in PoX (ASAP). ASAP is secure under full software compromise, enables asynchronous PoX, and incurs less hardware overhead than prior work.


翻译:嵌入式装置日益普遍,其重要性难以高估,尽管这些装置往往支持安全关键功能(例如医疗装置和传感器武器组合),但通常在严格的成本/能源预算下,使用缺乏复杂安全机制的低端微控制器单位(MCUs)执行。受这一问题的驱使,最近建立的一些能够产生正确/预期软件执行证明(PoX)的架构,有可能损害低端 MCUs 的正确/预期软件。在实践中,这种能力可以用来提供“从出生到”的感官数据,将感知结果/产出与执行预期的感测过程的不可想象的加密证据捆绑在一起。尽管取得了重大的进展,但目前对低端微调控制器的PoX计划忽视了许多应用程序的实时需求。 特别是,目前的PoX计划的安全性排除了在执行过程中出现的任何中断。我们认为,缺乏无序的硬件能力(即PoX内部的中断)可能掩盖PoX系统之前的安全性机能,因为一些SAPSAP系统应用程序需要实时处理。

0
下载
关闭预览

相关内容

ASAP:Application-Specific Systems, Architectures, and Processors。 Explanation:特定于应用程序的系统、体系结构和处理器。 Publisher: IEEE。 SIT:http://dblp.uni-trier.de/db/conf/asap
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员