Identifying heterogeneous treatment effects (HTEs) in randomized controlled trials is an important step toward understanding and acting on trial results. However, HTEs are often small and difficult to identify, and HTE modeling methods which are very general can suffer from low power. We present a method that exploits any existing relationship between illness severity and treatment effect, and identifies the "sweet spot", the contiguous range of illness severity where the estimated treatment benefit is maximized. We further compute a bias-corrected estimate of the conditional average treatment effect (CATE) in the sweet spot, and a $p$-value. Because we identify a single sweet spot and $p$-value, we believe our method to be straightforward to interpret and actionable: results from our method can inform future clinical trials and help clinicians make personalized treatment recommendations.
翻译:在随机控制的试验中,确定不同的治疗效果(HTEs)是了解和根据试验结果采取行动的一个重要步骤。然而,HTEs往往很小,很难确定,而且非常普遍的HTE模型方法可能受到低功率的影响。我们提出了一个方法,利用疾病严重程度和治疗效果之间的任何现有关系,并查明“甜点”和“甜点”的相邻疾病严重程度范围,因为估计的治疗效益是最大化的。我们进一步计算了对甜点的有条件平均治疗效应(CATE)的偏差校正估计值和1美元价值。由于我们确定了一个单一的甜点和美元价值,我们认为我们的方法可以直截了当地解释和可操作性:我们方法的结果可以为未来的临床试验提供信息,并帮助临床医生提出个性化治疗建议。