The electroencephalogram (EEG) is a powerful method to understand how the brain processes speech. Linear models have recently been replaced for this purpose with deep neural networks and yield promising results. In related EEG classification fields, it is shown that explicitly modeling subject-invariant features improves generalization of models across subjects and benefits classification accuracy. In this work, we adapt factorized hierarchical variational autoencoders to exploit parallel EEG recordings of the same stimuli. We model EEG into two disentangled latent spaces. Subject accuracy reaches 98.96% and 1.60% on respectively the subject and content latent space, whereas binary content classification experiments reach an accuracy of 51.51% and 62.91% on respectively the subject and content latent space.
翻译:电子脑图(EEG)是了解大脑语言表达方式的有力方法。 最近为此目的,线形模型被深神经网络所取代,并产生了有希望的结果。在相关的 EEG 分类领域,显示明确的主题差异性模型提高了不同主题模型的通用性和效益分类的准确性。在这项工作中,我们调整了分系数的等级变异自动转换器,以利用同一刺激的平行 EEG 记录。我们将EEEG 模型分为两个不相干的潜在空间。对象精确度分别达到主题空间和内容潜在空间的98.96%和1.60%,而二元内容分类实验在主题和内容潜在空间的精确度分别为51.51%和62.91%。