In this paper, we consider the structural change in a class of discrete valued time series, which the true conditional distribution of the observations is assumed to be unknown. The conditional mean of the process depends on a parameter $\theta^*$ which may change over time. We provide sufficient conditions for the consistency and the asymptotic normality of the Poisson quasi-maximum likelihood estimator (QMLE) of the model. We consider an epidemic change-point detection and propose a test statistic based on the QMLE of the parameter. Under the null hypothesis of a constant parameter (no change), the test statistic converges to a distribution obtained from a difference of two Brownian bridge. The test statistic diverges to infinity under the epidemic alternative, which establishes that the proposed procedure is consistent in power. The effectiveness of the proposed procedure is illustrated by simulated and real data examples.


翻译:在本文中,我们考虑了一组离散的有价值时间序列的结构变化,假设对观测结果的真正有条件分布是未知的。该过程的有条件平均值取决于一个参数$\theta ⁇ $,该参数可能会随时间变化而变化。我们为模型Poisson 准最大可能性估计值(QMLE)的一致性和无症状的正常性提供了充分的条件。我们考虑了流行病变化点检测,并根据参数的QMLE提出了测试统计数据。在不变参数(无变化)的无效假设下,测试统计数据与从两座布朗山桥差异(两座布朗山桥)获得的分布汇合在一起。测试统计数据与流行病替代品的无限性有差异,该变量确定拟议的程序具有一致性。模拟和真实数据实例说明了拟议程序的有效性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
7+阅读 · 2018年11月6日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员