Modern state and parameter estimations in power systems consist of two stages: the outer problem of minimizing the mismatch between network observation and prediction over the network parameters, and the inner problem of predicting the system state for given values of the parameters. The standard solution of the combined problem is iterative: (a) set the parameters, e.g. to priors on the power line characteristics, (b) map input observation to prediction of the output, (c) compute the mismatch between predicted and observed output, (d) make a gradient descent step in the space of parameters to minimize the mismatch, and loop back to (a). We show how modern Machine Learning (ML), and specifically training guided by automatic differentiation, allows to resolve the iterative loop more efficiently. Moreover, we extend the scheme to the case of incomplete observations, where Phasor Measurement Units (reporting real and reactive powers, voltage and phase) are available only at the generators (PV buses), while loads (PQ buses) report (via SCADA controls) only active and reactive powers. Considering it from the implementation perspective, our methodology of resolving the parameter and state estimation problem can be viewed as embedding of the Power Flow (PF) solver into the training loop of the Machine Learning framework (PyTorch, in this study). We argue that this embedding can help to resolve high-level optimization problems in power system operations and planning.
翻译:电源系统的现代状态和参数估计分为两个阶段:(a) 最大限度地减少网络观测和预测对网络参数的不匹配的外部问题,以及预测系统参数特定值的系统状态的内在问题。 综合问题的标准解决办法是迭代的:(a) 设定参数,例如对动力线特性的事先评估,(b) 用于预测输出的地图输入观测,(c) 计算预测和观察产出之间的不匹配,(d) 在参数空间中采取梯度下降步骤,以尽量减少不匹配,并回回回到(a) 。我们展示现代机器学习(ML)和具体由自动区分指导的培训如何能更有效地解决迭接环。此外,我们将这一办法扩大到不完全的观测,即只有发电机(PV客车)才有(报告真实和反应能力、电流和阶段),而载量(PQ客车)报告(通过SCADAD控制)只有主动和反应能力。从执行角度考虑,我们解决参数和状态估计问题的方法可以被视为将电源循环操作的升级到高水平的研究中。 (PFP) 解决这一系统升级的升级的解决方案。