We present a vehicle self-localization method using point-based deep neural networks. Our approach processes measurements and point features, i.e. landmarks, from a high-definition digital map to infer the vehicle's pose. To learn the best association and incorporate local information between the point sets, we propose an attention mechanism that matches the measurements to the corresponding landmarks. Finally, we use this representation for the point-cloud registration and the subsequent pose regression task. Furthermore, we introduce a training simulation framework that artificially generates measurements and landmarks to facilitate the deployment process and reduce the cost of creating extensive datasets from real-world data. We evaluate our method on our dataset, as well as an adapted version of the Kitti odometry dataset, where we achieve superior performance compared to related approaches; and additionally show dominant generalization capabilities.
翻译:我们使用基于点的深神经网络提出车辆自我定位方法。我们的方法处理测量和点特征,即从高清晰数字地图到推断车辆的布局。为了了解各点组之间的最佳联系并纳入当地信息,我们建议了一个与相应的地标相匹配的注意机制。最后,我们用这种表示法来进行点云登记和随后的回归任务。此外,我们引入了一个培训模拟框架,人工生成测量和标志,以便利部署进程,并降低从现实世界数据中创建广泛数据集的成本。我们评估了我们的数据组的方法,以及一个经过调整的基迪观察数据集版本,我们在该数据集中取得了优于相关方法的性能;此外还展示了占主导地位的普遍化能力。