Knowledge tracing (KT) serves as a primary part of intelligent education systems. Most current KTs either rely on expert judgments or only exploit a single network structure, which affects the full expression of learning features. To adequately mine features of students' learning process, Deep Knowledge Tracing Based on Spatial and Temporal Deep Representation Learning for Learning Performance Prediction (DKT-STDRL) is proposed in this paper. DKT-STDRL extracts spatial features from students' learning history sequence, and then further extracts temporal features to extract deeper hidden information. Specifically, firstly, the DKT-STDRL model uses CNN to extract the spatial feature information of students' exercise sequences. Then, the spatial features are connected with the original students' exercise features as joint learning features. Then, the joint features are input into the BiLSTM part. Finally, the BiLSTM part extracts the temporal features from the joint learning features to obtain the prediction information of whether the students answer correctly at the next time step. Experiments on the public education datasets ASSISTment2009, ASSISTment2015, Synthetic-5, ASSISTchall, and Statics2011 prove that DKT-STDRL can achieve better prediction effects than DKT and CKT.


翻译:知识追踪(KT)是智能教育系统的一个主要部分。大多数当前的KT公司要么依靠专家判断,要么只是利用单一的网络结构,影响学习功能的完整表达。为了充分挖掘学生学习过程的特点,本文件提出了以空间和时空深层演示学习为学习表现预测(DKT-STDRL)为基础的深层次知识追踪(DKT-STDRL)的建议。DKT-STDRL从学生学习历史序列中提取空间特征,然后进一步提取时间特征以提取更深层的隐藏信息。具体地说,DKT-STDRL模型首先利用CNN来提取学生练习序列的空间特征信息。然后,空间特征与最初的学生练习特征作为联合学习特征连接起来。随后,联合功能成为BILSTM部分的投入。最后,BILSTM部分从联合学习特征中提取时间特征,以获取学生在下一个时间步骤是否正确回答的预测信息。对公共教育数据集2009、ASSIT2015、Synthistical-5、ASSIST-C和SDRADRADRADRADRADLKLADryADRADRADRADRAsADRADRADYADYDYDYDYTADYDYTADYTAST和SDST和SDST和SDKKKKKADYADYADYADYADYADYADVADVADVADVADVADVDVDYADYDYDKK)的预测的更好效果。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
72+阅读 · 2018年12月22日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员