One of the greatest success stories of randomized algorithms for linear algebra has been the development of fast, randomized algorithms for highly overdetermined linear least-squares problems. However, none of the existing algorithms is backward stable, preventing them from being deployed as drop-in replacements for existing QR-based solvers. This paper introduces sketch-and-precondition with iterative refinement (SPIR) and FOSSILS, two provably backward stable randomized least-squares solvers. SPIR and FOSSILS combine iterative refinement with a preconditioned iterative method applied to the normal equations and converge at the same rate as existing randomized least-squares solvers. This work offers the promise of incorporating randomized least-squares solvers into existing software libraries while maintaining the same level of accuracy and stability as classical solvers.
翻译:暂无翻译