An integrated computational framework is introduced to study complex engineering systems through physics-based ensemble simulations on heterogeneous supercomputers. The framework is primarily designed for the quantitative assessment of laser-induced ignition in rocket engines. We develop and combine an implicit programming system, a compressible reacting flow solver, and a data generation/management strategy on a robust and portable platform. We systematically present this framework using test problems on a hybrid CPU/GPU machine. Efficiency, scalability, and accuracy of the solver are comprehensively assessed with canonical unit problems. Ensemble data management and autoencoding are demonstrated using a canonical diffusion flame case. Sensitivity analysis of the ignition of a turbulent, gaseous fuel jet is performed using a simplified, three-dimensional model combustor. Our approach unifies computer science, physics and engineering, and data science to realize a cross-disciplinary workflow. The framework is exascale-oriented and can be considered a benchmark for future computational science studies of real-world systems.
翻译:采用综合计算框架来研究复杂的工程系统,通过基于物理的混合模拟,对多式超级计算机进行混合共制模拟;这一框架主要设计用于对火箭发动机中激光引发的点火进行定量评估;我们开发并结合一个隐含的编程系统、一个压缩反应流求解器,以及一个强大和便携式平台的数据生成/管理战略;我们系统地利用混合CPU/GPU机器的测试问题来介绍这一框架;对溶解器的效率、可缩放性和准确性进行全面评估,并用罐头单位问题进行全面评估;利用一个罐头式扩散火焰案例来演示综合数据管理和自动编码;对动荡、气体燃料喷气式喷气机的点火进行感应分析,使用一个简化的、三维模型组合器进行;我们的方法将计算机科学、物理学和工程以及数据科学统一起来,以实现跨学科工作流程;这一框架以规模为导向,可被视为今后对现实世界系统进行计算科学研究的基准。