We provide a general and syntactically-defined family of sequent calculi, called \emph{semi-analytic}, to formalize the informal notion of a "nice" sequent calculus. We show that any sufficiently strong (multimodal) substructural logic with a semi-analytic sequent calculus enjoys the Craig Interpolation Property, CIP. As a positive application, our theorem provides a uniform and modular method to prove the CIP for several multimodal substructural logics, including many fragments and variants of linear logic. More interestingly, on the negative side, it employs the lack of the CIP in almost all substructural, superintuitionistic and modal logics to provide a formal proof for the well-known intuition that almost all logics do not have a "nice" sequent calculus. More precisely, we show that many substructural logics including $\mathsf{UL^-}$, $\mathsf{MTL}$, $\mathsf{R}$, $\mathsf{L}_n$ (for $n \geq 3$), $\mathsf{G}_n$ (for $n \geq 4$), and almost all extensions of $\mathsf{IMTL}$, $\mathsf{L}$, $\mathsf{BL}$, $\mathsf{RM^e}$, $\mathsf{IPC}$, $\mathsf{S4}$, and $\mathsf{Grz}$, (except for at most 1, 1, 3, 8, 7, 37, and 6 of them, respectively) do not have a semi-analytic calculus. Keywords. Craig interpolation, sequent calculi, substructural logics, linear logics, subexponential modalities


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2023年12月5日
Arxiv
70+阅读 · 2022年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员