Inspired by the developments in quantum computing, building quantum-inspired classical hardware to solve computationally hard problems has been receiving increasing attention. By introducing systematic sparsification techniques, we propose and demonstrate a massively parallel architecture, termed sIM or the sparse Ising Machine. Exploiting the sparsity of the resultant problem graphs, the sIM achieves ideal parallelism: the key figure of merit $-$ flips per second $-$ scales linearly with the total number of probabilistic bits (p-bit) in the system. This makes sIM up to 6 orders of magnitude faster than a CPU implementing standard Gibbs sampling. When compared to optimized implementations in TPUs and GPUs, the sIM delivers up to ~ 5 - 18x measured speedup. In benchmark combinatorial optimization problems such as integer factorization, the sIM can reliably factor semi-primes up to 32-bits, far larger than previous attempts from D-Wave and other probabilistic solvers. Strikingly, the sIM beats competition-winning SAT solvers (by up to ~ 4 - 700x in runtime to reach 95% accuracy) in solving hard instances of the 3SAT problem. A surprising observation is that even when the asynchronous sampling is made inexact with simultaneous updates using faster clocks, sIM can find the correct ground state with further speedup. The problem encoding and sparsification techniques we introduce can be readily applied to other Ising Machines (classical and quantum) and the asynchronous architecture we present can be used for scaling the demonstrated 5,000$-$10,000 p-bits to 1,000,000 or more through CMOS or emerging nanodevices.


翻译:在量子计算的发展启发下,建立量子激励型古典硬件以解决计算硬性问题的工作越来越受到越来越多的关注。通过采用系统化的封闭技术,我们提议并展示一个大规模平行的结构,称为SIM或稀疏的Ising Machine。利用由此产生的问题图的宽度,SIM实现了理想的平行性:优美-美元翻转的关键数字每秒以美元为单位,线性比系统中概率化比点(p-bit)的总数要大得多。这样,SIM比CPU实施标准Gbs取样的速度快到6级级。与优化的TPUs和GPSPs执行相比,SIM提供高达~5 - 18x测量的加速度。在诸如整数因数化等基准组合优化问题中,SIM可以可靠地将半位升至32比值,比D-Wave和其他振动性快速解算器的总数要大得多得多。 StIM比级击败得更快,甚至连平级的CSSAT解算器应用的快速解算器,在使用S-S-x的Crental rental mill ricks mill 时,可以再将Sl 4-x

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年1月19日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年11月29日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
3+阅读 · 2020年9月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年1月19日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员