We address the problem of computing a Steiner Arborescence on a directed hypercube. The directed hypercube enjoys a special connectivity structure among its node set $\{0,1\}^m$, but its exponential in $m$ size renders traditional Steiner tree algorithms inefficient. Even though the problem was known to be NP-complete, parameterized complexity of the problem was unknown. With applications in evolutionary tree reconstruction algorithms and incremental algorithms for computing a property on multiple input graphs, any algorithm for this problem would open up new ways to study these applications. In this paper, we present the first algorithms, to the best our knowledge, that prove the problem to be fixed parameter tractable (FPT) wrt two natural parameters -- number of input terminals and penalty of the arborescence. Given any directed $m$-dimensional hypercube, rooted at the zero node, and a set of input terminals $R$ that needs to be spanned by the Steiner arborescence, we prove that the problem is FPT wrt the penalty parameter $q$, by providing a randomized algorithm that computes an optimal arborescence $T$ in $O\left(q^44^{q\left(q+1\right)}+q\left|R\right|m^2\right)$ with probability at least $4^{-q}$. If we trade-off exact solution for an additive approximate one, then we can design a parameterized approximation algorithm with better running time - computing an arborescence $T$ with cost at most $OPT+(\left|R\right|-4)(q_{opt}-1)$ in time $O(\left|R\right|m^2+1.2738^{q_{opt}})$. We also present a dynamic programming algorithm that computes an optimal arborescence in $O(3^{\left|R\right|}\left|R\right|m)$ time, thus proving that the problem is FPT on the parameter $\left|R\right|$.
翻译:我们用一个直接的超立方体来计算施泰纳的值值。 定向超立方拥有一个特殊的连接结构, 它的节点设定了 $0, 1美元, 1美元, 但它的指数使得施泰纳树的传统的算法效率低下。 尽管这个问题已知为NP- 完成, 这个问题的参数复杂性并不为人所知。 随着在多个输入图中计算属性的进化树重建算法和递增算法的应用, 这个问题的任何算法都将打开研究这些应用程序的新方法。 在本文中, 我们最了解的首个算法结构, 其值为$1美元, 但它以美元为固定参数可移动的值, 输入终端的数量和对 arbreacreacur 的罚款。 鉴于任何直接的 $m=q- 立方立方立方体, 以及一组需要由施泰纳的直径( ⁇ ) 直方数据快速化输入的输入终端, 我们证明问题在于FPTrent 参数 $Q$$, 美元, 通过提供一个最精确的精确的精确的精确的算算算算法, 因此, 在最精确的速设计中, AS正正对一个最高级的直径的速化的 RalqqralQ== irqqqqqqral_ ralentalentalentalental_ entalentalentalental a a a axx