Deep ensemble is a simple and straightforward approach for approximating Bayesian inference and has been successfully applied to many classification tasks. This study aims to comprehensively investigate this approach in the multi-output regression task to predict the aerodynamic performance of a missile configuration. By scrutinizing the effect of the number of neural networks used in the ensemble, an obvious trend toward underconfidence in estimated uncertainty is observed. In this context, we propose the deep ensemble framework that applies the post-hoc calibration method, and its improved uncertainty quantification performance is demonstrated. It is compared with Gaussian process regression, the most prevalent model for uncertainty quantification in engineering, and is proven to have superior performance in terms of regression accuracy, reliability of estimated uncertainty, and training efficiency. Finally, the impact of the suggested framework on the results of Bayesian optimization is examined, showing that whether or not the deep ensemble is calibrated can result in completely different exploration characteristics. This framework can be seamlessly applied and extended to any regression task, as no special assumptions have been made for the specific problem used in this study.


翻译:深度集成是逼近贝叶斯推断的简单直接方法,已成功应用于许多分类任务。本研究旨在全面探究这种方法在多输出回归任务中的应用,以预测导弹构型的空气动力学性能。通过研究采用集成中神经网络数量的影响,发现一种明显的低估不确定性趋势。在此背景下,我们提出了应用后处理校准方法的深度集成框架,展示了其改善的不确定性量化性能。它与高斯过程回归进行比较,在回归精度、不确定性估计的可靠性和训练效率方面证明了具有更好的性能。最后,我们研究了建议框架对贝叶斯优化结果的影响并表明深度集成是否校准可以产生完全不同的探索特性。该框架可以无缝地应用和扩展到任何回归任务中,因为没有针对本研究使用的特定问题做出特殊假设。

0
下载
关闭预览

相关内容

《校准自主性中的信任》2022最新16页slides
专知会员服务
20+阅读 · 2022年12月7日
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
专知会员服务
41+阅读 · 2020年10月13日
Uber AI NeurIPS 2019《元学习meta-learning》教程,附92页PPT下载
专知会员服务
113+阅读 · 2019年12月13日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员