Mobile edge computing (MEC) emerges as a promising solution for servicing delay-sensitive tasks at the edge network. A body of recent literature started to focus on cost-efficient service placement and request scheduling. This work investigates the joint optimization of service placement and request scheduling in a dense MEC network, and develops an efficient online algorithm that achieves close-to-optimal performance. Our online algorithm consists of two basic modules: (1) a regularization with look-ahead approach from competitive online convex optimization, for decomposing the offline relaxed minimization problem into multiple sub-problems, each of which can be efficiently solved in each time slot; (2) a randomized rounding method to transform the fractional solution of offline relaxed problem into integer solution of the original minimization problem, guaranteeing a low competitive ratio. Both theoretical analysis and simulation studies corroborate the efficacy of our proposed online MEC optimization algorithm.
翻译:移动边缘计算(MEC)是向边缘网络的延迟敏感任务提供服务的一个有希望的解决方案。最近一大批文献开始关注成本效益高的服务安置和请求时间安排。这项工作调查了在密集的MEC网络中联合优化服务安置和请求时间安排,并开发了高效的在线算法,实现接近最佳的性能。我们的在线算法由两个基本模块组成:(1) 将脱机的放松最小化问题分解成多个子问题,每个问题在每个时段都可以有效解决;(2) 随机四轮法,将脱机的脱机问题分解成原始最小化问题的整数解决方案,保证低竞争率。理论分析和模拟研究都证实了我们提议的网上MEC优化算法的功效。