A constraint satisfaction problem (CSP), Max-CSP$({\cal F})$, is specified by a finite set of constraints ${\cal F} \subseteq \{[q]^k \to \{0,1\}\}$ for positive integers $q$ and $k$. An instance of the problem on $n$ variables is given by $m$ applications of constraints from ${\cal F}$ to subsequences of the $n$ variables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the $(\gamma,\beta)$-approximation version of the problem for parameters $0 \leq \beta < \gamma \leq 1$, the goal is to distinguish instances where at least $\gamma$ fraction of the constraints can be satisfied from instances where at most $\beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of this problem in the context of streaming algorithms and give a dichotomy result in the dynamic setting, where constraints can be inserted or deleted. Specifically, for every family ${\cal F}$ and every $\beta < \gamma$, we show that either the approximation problem is solvable with polylogarithmic space in the dynamic setting, or not solvable with $o(\sqrt{n})$ space. We also establish tight inapproximability results for a broad subclass in the streaming insertion-only setting. Our work builds on, and significantly extends previous work by the authors who consider the special case of Boolean variables ($q=2$), singleton families ($|{\cal F}| = 1$) and where constraints may be placed on variables or their negations. Our framework extends non-trivially the previous work allowing us to appeal to richer norm estimation algorithms to get our algorithmic results. For our negative results we introduce new variants of the communication problems studied in the previous work, build new reductions for these problems, and extend the technical parts of previous works.


翻译:限制满意度问题 (CSP), 最大 Max- CSP$ (xcal F}) 。 限制满意度问题由一系列有限的限制来指定 $[cal F} \ subseteq {q]\\ k\ k至 Q 0. 1, q美元和 美元。 美元变量问题的例子来自 $_ cal F} 至 美元变量的次序列。 目标是找到一个符合最大限制数量的变量的指派 。 在 $( gamma,\ beta) $ 的有限限制 中, 美元 美元 = = Qseteq = = q 美元 美元 。 目标在于区分以下几个例子: 将限制的至少 $\ gamma 部分应用到, 美元 来满足这些变量的后继 。 在这项工作中, 我们考虑这一问题的匹配性, 以 美元 。 美元 以 美元 美元 驱动算法 和 直方 表示 直方 的直方 的 的 的 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
Dimensionality Reduction for Sum-of-Distances Metric
Arxiv
0+阅读 · 2021年6月24日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员