Bereg et al. (2012) introduced the Boxes Class Cover problem, which has its roots in classification and clustering applications: Given a set of n points in the plane, each colored red or blue, find the smallest cardinality set of axis-aligned boxes whose union covers the red points without covering any blue point. In this paper we give an alternative proof of APX-hardness for this problem, which also yields an explicit lower bound on its approximability. Our proof also directly applies when restricted to sets of points in general position and to the case where so-called half-strips are considered instead of boxes, which is a new result. We also introduce a symmetric variant of this problem, which we call Simultaneous Boxes Class Cover and can be stated as follows: Given a set S of n points in the plane, each colored red or blue, find the smallest cardinality set of axis-aligned boxes which together cover S such that all boxes cover only points of the same color and no box covering a red point intersects a box covering a blue point. We show that this problem is also APX-hard and give a polynomial-time constant-factor approximation algorithm.


翻译:Bereg等人(2012年)引入了“框类覆盖”问题,其根源在于分类和组群应用:如果在平面上有一组 n点,每个有色红色或蓝色,则找到最小的轴重框,其结合覆盖红点,但不覆盖任何蓝色点。在本文中,我们为这一问题提供了APX-硬度的替代证明,其相近性也产生一个明显的较低约束。当我们的证据还直接适用于限制在一般位置的一组点,以及所谓半点被考虑而不是箱的情况,这是一个新的结果。我们还引入了这一问题的一个对称变量,我们称之为“同质箱”类,并可以说明如下:如果在平面上有一组 n点,每个有色或蓝色的,则找到最小的轴重点组合组合,从而所有框仅覆盖同一颜色的点,而没有包含一个红点的交叉点,覆盖一个蓝点的框。我们显示,这一问题也是 APX-hard和给一个聚度常数的矩阵。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
如何撰写好你的博士论文?CMU-Priya博士这30页ppt为你指点
专知会员服务
55+阅读 · 2020年10月30日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
0+阅读 · 2021年8月26日
Code Coverage and Test Automation: State of the Art
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月25日
VIP会员
相关VIP内容
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
如何撰写好你的博士论文?CMU-Priya博士这30页ppt为你指点
专知会员服务
55+阅读 · 2020年10月30日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
已删除
将门创投
5+阅读 · 2020年3月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员