Controllable layout generation aims at synthesizing plausible arrangement of element bounding boxes with optional constraints, such as type or position of a specific element. In this work, we try to solve a broad range of layout generation tasks in a single model that is based on discrete state-space diffusion models. Our model, named LayoutDM, naturally handles the structured layout data in the discrete representation and learns to progressively infer a noiseless layout from the initial input, where we model the layout corruption process by modality-wise discrete diffusion. For conditional generation, we propose to inject layout constraints in the form of masking or logit adjustment during inference. We show in the experiments that our LayoutDM successfully generates high-quality layouts and outperforms both task-specific and task-agnostic baselines on several layout tasks.
翻译:可控制的布局生成旨在综合具有可选限制的、有可选限制(例如特定元素的类型或位置)的组合要素框的合理安排。 在这项工作中,我们试图在一个基于离散状态-空间扩散模型的单一模型中解决范围广泛的布局生成任务。 我们的模型名为布局DM, 自然处理离散表达式结构布局数据, 并学习从初始输入中逐步推导无噪音布局, 我们从初始输入中以模式- 明智的离散扩散模式来模拟布局腐败过程。 对于有条件生成, 我们提议以隐蔽或逻辑调整的形式在推断中引入布局限制。 我们在实验中显示, 我们的布局DM成功地生成了高质量的布局, 并超越了多项布局任务和任务- 不可知性的基线。</s>