We consider component-wise estimation of order restricted location/scale parameters $\theta_1$ and $\theta_2$ ($\theta_1\leq \theta_2$) of a general bivariate distribution under the squared error loss function. To find improvements over the best location/scale equivariant estimators (BLEE/BSEE) of $\theta_1$ and $\theta_2$, we study isotonic regression of suitable location/scale equivariant estimators (LEE/SEE) of $\theta_1$ and $\theta_2$ with general weights. Let $\mathcal{D}_{1,\nu}$ and $\mathcal{D}_{2,\beta}$ denote suitable classes of isotonic regression estimators of $\theta_1$ and $\theta_2$, respectively. Under the squared error loss function, we characterize admissible estimators within classes $\mathcal{D}_{1,\nu}$ and $\mathcal{D}_{2,\beta}$, and identify estimators that dominate the BLEE/BSEE of $\theta_1$ and $\theta_2$. Our study unifies and extends several studies reported in the literature for specific probability distributions having independent marginals. Additionally, some new and interesting results are obtained. A simulation study is also considered to compare the risk performances of various estimators.
翻译:我们考虑在平方错误损失函数下对限制位置/尺度参数的按部位估算值$\theta_1美元和美元\theta_2美元($thta_1\leq\theta_2美元),在平方错误损失函数下,对普通双变分布值的按部位估算值($\theta_1\leq\theta_2美元)和美元\theta_2美元($theta_2美元)。要对最佳位置/规模等差估计值($\theta_1美元和$\thetheta_scale参数)进行部分估算,我们研究适当的位置/规模等差估计值估计值(LEE/SEE)的按部位回归值($\mathal_1美元和$\theta_2美元($thta_ta_2美元),我们研究的按部位偏差估计的按部位($2美元) 和(美元)的按部位(美元) 和(美元)的按部位分配结果进行新的分析。