Hippocampus segmentation on magnetic resonance imaging is of key importance for the diagnosis, treatment decision and investigation of neuropsychiatric disorders. Automatic segmentation is an active research field, with many recent models using deep learning. Most current state-of-the art hippocampus segmentation methods train their methods on healthy or Alzheimer's disease patients from public datasets. This raises the question whether these methods are capable of recognizing the hippocampus on a different domain, that of epilepsy patients with hippocampus resection. In this paper we present a state-of-the-art, open source, ready-to-use, deep learning based hippocampus segmentation method. It uses an extended 2D multi-orientation approach, with automatic pre-processing and orientation alignment. The methodology was developed and validated using HarP, a public Alzheimer's disease hippocampus segmentation dataset. We test this methodology alongside other recent deep learning methods, in two domains: The HarP test set and an in-house epilepsy dataset, containing hippocampus resections, named HCUnicamp. We show that our method, while trained only in HarP, surpasses others from the literature in both the HarP test set and HCUnicamp in Dice. Additionally, Results from training and testing in HCUnicamp volumes are also reported separately, alongside comparisons between training and testing in epilepsy and Alzheimer's data and vice versa. Although current state-of-the-art methods, including our own, achieve upwards of 0.9 Dice in HarP, all tested methods, including our own, produced false positives in HCUnicamp resection regions, showing that there is still room for improvement for hippocampus segmentation methods when resection is involved.
翻译:在磁共振成像上,关于磁共振成像的河马氏分解对于诊断、治疗决定和调查神经精神紊乱至关重要。 自动分解是一个活跃的研究领域, 有许多最近的模型使用深层学习。 目前, 最先进的河马分解方法通过公共数据集对健康病人或阿尔茨海默氏病病人进行健康或阿尔茨海默氏病分解方法的培训。 这就提出了一个问题: 这些方法是否能够在不同领域, 即有河马氏分泌重新剖的癫痫病人, 对诊断、 治疗和调查神经神经精神紊乱症至关重要。 在本文中, 自动分解是一个最先进的研究领域, 使用基于河马运动分泌分解的深度学习方法。 它使用扩展的2D多方向方法, 自动处理和定向。 这种方法是使用HarP, 公共阿尔茨海默氏分泌病分解数据集。 我们用这种方法与其他深层学习方法一起测试, 在两个领域: HarP HarP 测试和内部直流分解中, 包括 HCURamp 测试中, 我们的自我自我分剖分解, 在HCUP 测试中, 测试中, 我们用的方法, 数据测试中, 我们用的方法, 在HCUBER 测试中, 测试中, 测试中, 我们用的方法, 在HCUP Rest 测试中, 测试中, 我们用的方法, 测试中, 测试中, 在HCUBRBRBRB 测试中, 测试中, 测试中, 在HCRBDRDRDRD。