Intelligent reflecting surface (IRS) can be densely deployed in wireless networks to significantly enhance the communication channels. In this letter, we consider the downlink transmission from a multi-antenna base station (BS) to a single-antenna user, by exploiting the cooperative passive beamforming (CPB) and line-of-sight (LoS) path diversity gains of multi-IRS signal reflection. Unlike existing works where only one single multi-IRS reflection path from the BS to user is selected, we propose a new and more general {\it \textbf{multi-path beam routing}} scheme. Specifically, the BS sends the user's information signal via multiple orthogonal active beams (termed as {\it \textbf{active beam splitting}}), which point towards different IRSs. Then, these beamed signals are subsequently reflected by selected IRSs via their CPB in different paths, and finally coherently combined at the user's receiver (thus named {\it \textbf{passive beam combining}}). For this scheme, we formulate a new multi-path beam routing design problem to jointly optimize the number of IRS reflection paths, the selected IRSs for each of the reflection paths, the active/passive beamforming at the BS/each selected IRS, as well as the BS's power allocation over different active beams, so as to maximize the received signal power at the user. To solve this challenging problem, we first derive the optimal BS/IRS beamforming and BS power allocation for a given set of reflection paths. The clique-based approach in graph theory is then applied to solve the remaining multi-path selection problem efficiently. Simulation results show that our proposed multi-path beam routing scheme significantly outperforms its conventional single-path beam routing special case.

0
下载
关闭预览

相关内容

Surface 是微软公司( Microsoft)旗下一系列使用 Windows 10(早期为 Windows 8.X)操作系统的电脑产品,目前有 Surface、Surface Pro 和 Surface Book 三个系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由时任微软 CEO 史蒂夫·鲍尔默发布于在洛杉矶举行的记者会,2012 年 10 月 26 日上市销售。

In this letter, we study efficient uplink channel estimation design for a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted two-user communication systems. We first consider the time switching (TS) protocol for STAR-RIS and propose an efficient scheme to separately estimate the channels of the two users with optimized training (transmission/reflection) pattern. Next, we consider the energy splitting (ES) protocol for STAR-RIS under the practical coupled phase-shift model and devise a customized scheme to simultaneously estimate the channels of both users. Although the problem of minimizing the resultant channel estimation error for the ES protocol is difficult to solve, we propose an efficient algorithm to obtain a high-quality solution by jointly designing the pilot sequences, power-splitting ratio, and training patterns. Numerical results show the effectiveness of the proposed channel estimation designs and reveal that the STAR-RIS under the TS protocol achieves a smaller channel estimation error than the ES case.

0
0
下载
预览

Simultaneously transmitting/refracting and reflecting reconfigurable intelligent surface (STAR-RIS) has been introduced to achieve full coverage area. This paper investigate the performance of STAR-RIS assisted non-orthogonal multiple access (NOMA) networks over Rician fading channels, where the incidence signals sent by base station are reflected and transmitted to the nearby user and distant user, respectively. To evaluate the performance of STAR-RIS-NOMA networks, we derive new exact and asymptotic expressions of outage probability and ergodic rate for a pair of users, in which the imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) schemes are taken into consideration. Based on the approximated results, the diversity orders of $zero$ and $ {\frac{{\mu _n^2K}}{{2{\Omega _n}}} + 1} $ are achieved for the nearby user with ipSIC/pSIC, while the diversity order of distant user is equal to ${\frac{{\mu _m^2 K}}{{2{\Omega _m}}}}$. The high signal-to-noise radio (SNR) slopes of ergodic rates for nearby user with pSIC and distant user are equal to $one$ and $zero$, respectively. In addition, the system throughput of STAR-RIS-NOMA is discussed in delay-limited and delay-tolerant modes. Simulation results are provided to verify the accuracy of the theoretical analyses and demonstrate that: 1) The outage probability of STAR-RIS-NOMA outperforms that of STAR-RIS assisted orthogonal multiple access (OMA) and conventional cooperative communication systems; 2) With the increasing of configurable elements $K$ and Rician factor $\kappa $, the STAR-RIS-NOMA networks are capable of attaining the enhanced performance; and 3) The ergodic rates of STAR-RIS-NOMA are superior to that of STAR-RIS-OMA.

0
0
下载
预览

Orbital angular momentum (OAM) at radio frequency (RF) has attracted more and more attention as a novel approach of multiplexing a set of orthogonal OAM modes on the same frequency channel to achieve high spectral efficiency (SE). However, the precondition for maintaining the orthogonality among different OAM modes is perfect alignment of the transmit and receive uniform circular arrays (UCAs), which is difficult to be satisfied in practical wireless communication scenario. Therefore, to achieve available multi-mode OAM broadband wireless communication, we first investigate the effect of oblique angles on the transmission performance of the multi-mode OAM broadband system in the non-parallel misalignment case. Then, we compare the UCA-based RF analog and baseband digital transceiver structures and corresponding beam steering schemes. Mathematical analysis and numerical simulations validate that the SE of the misaligned multi-mode OAM broadband system is quite low, while analog and digital beam steering both can significantly improve the SE of the system. However, digital beam steering can obtain higher SE than analog beam steering especially when the bandwidth and the number of array elements are large, which validates that baseband digital transceiver with digital beam steering is more suitable for multi-mode OAM broadband wireless communication systems in practice.

0
0
下载
预览

Hybrid analog and digital beamforming transceivers are instrumental in addressing the challenge of expensive hardware and high training overheads in the next generation millimeter-wave (mm-Wave) massive MIMO (multiple-input multiple-output) systems. However, lack of fully digital beamforming in hybrid architectures and short coherence times at mm-Wave impose additional constraints on the channel estimation. Prior works on addressing these challenges have focused largely on narrowband channels wherein optimization-based or greedy algorithms were employed to derive hybrid beamformers. In this paper, we introduce a deep learning (DL) approach for channel estimation and hybrid beamforming for frequency-selective, wideband mm-Wave systems. In particular, we consider a massive MIMO Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system and propose three different DL frameworks comprising convolutional neural networks (CNNs), which accept the raw data of received signal as input and yield channel estimates and the hybrid beamformers at the output. We also introduce both offline and online prediction schemes. Numerical experiments demonstrate that, compared to the current state-of-the-art optimization and DL methods, our approach provides higher spectral efficiency, lesser computational cost and fewer number of pilot signals, and higher tolerance against the deviations in the received pilot data, corrupted channel matrix, and propagation environment.

0
0
下载
预览

We study the problem of user association, i.e., determining which base station (BS) a user should associate with, in a dense millimeter wave (mmWave) network. In our system model, in each time slot, a user arrives with some probability in a region with a relatively small geographical area served by a dense mmWave network. Our goal is to devise an association policy under which, in each time slot in which a user arrives, it is assigned to exactly one BS so as to minimize the weighted average amount of time that users spend in the system. The above problem is a restless multi-armed bandit problem and is provably hard to solve. We prove that the problem is Whittle indexable, and based on this result, propose an association policy under which an arriving user is associated with the BS having the smallest Whittle index. Using simulations, we show that our proposed policy outperforms several user association policies proposed in prior work.

0
0
下载
预览

Simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) has been considered as a promising auxiliary device to enhance the performance of the wireless network, where users located at the different sides of the surfaces can be simultaneously served by the transmitting and reflecting signals. In this paper, the energy efficiency (EE) maximization problem for a non-orthogonal multiple access (NOMA) assisted STAR-RIS downlink network is investigated. Due to the fractional form of the EE, it is challenging to solve the EE maximization problem by the traditional convex optimization solutions. In this work, a deep deterministic policy gradient (DDPG)-based algorithm is proposed to maximize the EE by jointly optimizing the transmission beamforming vectors at the base station and the coefficients matrices at the STAR-RIS. Simulation results demonstrate that the proposed algorithm can effectively maximize the system EE considering the time-varying channels.

0
0
下载
预览

We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated with a performance loss in non-isotropic scattering environments. We propose two novel estimation methods that can be applied without downlink pilots. The first method is model-based and asymptotic arguments are utilized to identify a connection between the effective channel gain and the average received power during a coherence interval. The second method is data-driven and trains a neural network to identify a mapping between the available information and the effective channel gain. Both methods can be utilized for any channel distribution and precoding. For the model-aided method, we derive all expressions in closed form for the case when maximum ratio or zero-forcing precoding is used. We compare the proposed methods with the state-of-the-art using the normalized mean-squared error and spectral efficiency (SE). The results suggest that the two proposed methods provide better SE than the state-of-the-art when there is a low level of channel hardening, while the performance difference is relatively small with the uncorrelated channel model.

0
0
下载
预览

This paper studies an intelligent reflecting surface (IRS)-aided multiple-input-multiple-output (MIMO) full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) operating in FD broadcasts energy signals to multiple devices for their energy harvesting (EH) in the downlink (DL) and meanwhile receives information signals from devices in the uplink (UL) with the help of an IRS. Taking into account the practical finite self-interference (SI) and the non-linear EH model, we formulate the weighted sum throughput maximization optimization problem by jointly optimizing DL/UL time allocation, precoding matrices at devices, transmit covariance matrices at the HAP, and phase shifts at the IRS. Since the resulting optimization problem is non-convex, there are no standard methods to solve it optimally in general. To tackle this challenge, we first propose an element-wise (EW) based algorithm, where each IRS phase shift is alternately optimized in an iterative manner. To reduce the computational complexity, a minimum mean-square error (MMSE) based algorithm is proposed, where we transform the original problem into an equivalent form based on the MMSE method, which facilities the design of an efficient iterative algorithm. In particular, the IRS phase shift optimization problem is recast as an second-order cone program (SOCP), where all the IRS phase shifts are simultaneously optimized. For comparison, we also study two suboptimal IRS beamforming configurations in simulations, namely partially dynamic IRS beamforming (PDBF) and static IRS beamforming (SBF), which strike a balance between the system performance and practical complexity.

0
0
下载
预览

This work studies the joint beamforming design problem of achieving max-min rate fairness in a satellite-terrestrial integrated network (STIN) where the satellite provides wide coverage to multibeam multicast satellite users (SUs), and the terrestrial base station (BS) serves multiple cellular users (CUs) in a densely populated area. Both the satellite and BS operate in the same frequency band. Since rate-splitting multiple access (RSMA) has recently emerged as a promising strategy for non-orthogonal transmission and robust interference management in multi-antenna wireless networks, we present two RSMA-based STIN schemes, namely the coordinated scheme relying on channel state information (CSI) sharing and the cooperative scheme relying on CSI and data sharing. Our objective is to maximize the minimum fairness rate amongst all SUs and CUs subject to transmit power constraints at the satellite and the BS. A joint beamforming algorithm is proposed to reformulate the original problem into an approximately equivalent convex one which can be iteratively solved. Moreover, an expectation-based robust joint beamforming algorithm is proposed against the practical environment when satellite channel phase uncertainties are considered. Simulation results demonstrate the effectiveness and robustness of our proposed RSMA schemes for STIN, and exhibit significant performance gains compared with various traditional transmission strategies.

0
0
下载
预览

This work investigates the effect of double intelligent reflecting surface (IRS) in improving the spectrum efficient of multi-user multiple-input multiple-output (MIMO) network operating in the millimeter wave (mmWave) band. Specifically, we aim to solve a weighted sum rate maximization problem by jointly optimizing the digital precoding at the transmitter and the analog phase shifters at the IRS, subject to the minimum achievable rate constraint. To facilitate the design of an efficient solution, we first reformulate the original problem into a tractable one by exploiting the majorization-minimization (MM) method. Then, a block coordinate descent (BCD) method is proposed to obtain a suboptimal solution, where the precoding matrices and the phase shifters are alternately optimized. Specifically, the digital precoding matrix design problem is solved by the quadratically constrained quadratic programming (QCQP), while the analog phase shift optimization is solved by the Riemannian manifold optimization (RMO). The convergence and computational complexity are analyzed. Finally, simulation results are provided to verify the performance of the proposed design, as well as the effectiveness of double-IRS in improving the spectral efficiency.

0
0
下载
预览
小贴士
相关论文
Chenyu Wu,Changsheng You,Yuanwei Liu,Xuemai Gu,Yunlong Cai
0+阅读 · 12月2日
Xinwei Yue,Jin Xie,Yuanwei Liu,Zhihao Han,Rongke Liu,Zhiguo Ding
0+阅读 · 12月2日
Zhengjuan Tian,Rui Chen,Wen-Xuan Long,Hong Zhou,Marco Moretti
0+阅读 · 12月1日
Ahmet M. Elbir,Kumar Vijay Mishra,M. R. Bhavani Shankar,Björn Ottersten
0+阅读 · 12月1日
S. K. Singh,V. S. Borkar,G. S. Kasbekar
0+阅读 · 12月1日
Yi Guo,Fang Fang,Donghong Cai,Zhiguo Ding
0+阅读 · 11月30日
Amin Ghazanfari,Trinh Van Chien,Emil Björnson,Erik G. Larsson
0+阅读 · 11月28日
Double Intelligent Reflecting Surface-assisted Multi-User MIMO mmWave Systems with Hybrid Precoding
Hehao Niu,Zheng Chu,Fuhui Zhou,Cunhua Pan,Derrick Wing Kwan Ng,Huan X. Nguyen
0+阅读 · 11月26日
相关资讯
已删除
将门创投
5+阅读 · 2019年10月29日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
11+阅读 · 2019年4月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
6+阅读 · 2019年3月21日
VALSE 2019 大会组委会成立
VALSE
6+阅读 · 2018年11月2日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
Top