In this note we consider the Steiner tree problem under Bilu-Linial stability. We give strong geometric structural properties that need to be satisfied by stable instances. We then make use of, and strengthen, these geometric properties to show that $1.562$-stable instances of Euclidean Steiner trees are polynomial-time solvable. We also provide a connection between certain approximation algorithms and Bilu-Linial stability for Steiner trees.
翻译:在本说明中,我们在比卢-利尼亚尔稳定状态下考虑施泰纳树的问题。我们给出了需要以稳定实例满足的强有力的几何结构属性。然后我们利用并加强了这些几何属性,以表明1.562亿美元的欧克利得-施泰纳树的可兑换案例是多时可溶的。我们还提供了某些近似算法与施泰纳树的比卢-利尼亚尔稳定性之间的联系。