The Credal semantics is a probabilistic extension of the answer set semantics which can be applied to programs that may or may not be stratified. It assigns to atoms a set of acceptable probability distributions characterised by its lower and upper bounds. Performing exact probabilistic inference in the Credal semantics is computationally intractable. This paper presents a first solver, based on sampling, for probabilistic inference under the Credal semantics called PASOCS (Parallel Approximate SOlver for the Credal Semantics). PASOCS performs both exact and approximate inference for queries given evidence. Approximate solutions can be generated using any of the following sampling methods: naive sampling, Metropolis-Hastings and Gibbs Markov Chain Monte-Carlo. We evaluate the fidelity and performance of our system when applied to both stratified and non-stratified programs. We perform a sanity check by comparing PASOCS to available systems for stratified programs, where the semantics agree, and show that our system is competitive on unstratified programs.
翻译:Credal 语义解析器是解答器语义学的概率延伸,可以适用于可能或可能不会被分解的程序。 它指定原子为一组可以接受的概率分布, 以其下界和上界为特征。 在 Credal 语义学中进行精确的概率推论是难以计算的方法。 本文根据取样, 提供了第一个求解器, 用于在称为 Credal 语义学的Credal 语义学中进行概率推论。 PASOSCS (Parallel Ap nearly Solver) 下方和上方语义学中进行推论 。 在语义学同意的情况下, 我们通过比较 PASOSCS 和 Smitric 程序的现有系统, 进行心智检查, 从而得出准确和大概的推论。 可以使用下列任何抽样方法产生近似的解决办法: 天真取样、 Metopolis- Haintings 和 Gibbbbs Markov Call Monte- Carlo 。 我们评估了我们的系统在应用分层和未分级程序时的可靠性和不具有竞争力的系统。