Double blind $T$-private information retrieval (DB-TPIR) enables two users, each of whom specifies an index ($\theta_1, \theta_2$, resp.), to efficiently retrieve a message $W(\theta_1,\theta_2)$ labeled by the two indices, from a set of $N$ servers that store all messages $W(k_1,k_2), k_1\in\{1,2,\cdots,K_1\}, k_2\in\{1,2,\cdots,K_2\}$, such that the two users' indices are kept private from any set of up to $T_1,T_2$ colluding servers, respectively, as well as from each other. A DB-TPIR scheme based on cross-subspace alignment is proposed in this paper, and shown to be capacity-achieving in the asymptotic setting of large number of messages and bounded latency. The scheme is then extended to $M$-way blind $X$-secure $T$-private information retrieval (MB-XS-TPIR) with multiple ($M$) indices, each belonging to a different user, arbitrary privacy levels for each index ($T_1, T_2,\cdots, T_M$), and arbitrary level of security ($X$) of data storage, so that the message $W(\theta_1,\theta_2,\cdots, \theta_M)$ can be efficiently retrieved while the stored data is held secure against collusion among up to $X$ colluding servers, the $m^{th}$ user's index is private against collusion among up to $T_m$ servers, and each user's index $\theta_m$ is private from all other users. The general scheme relies on a tensor-product based extension of cross-subspace alignment and retrieves $1-(X+T_1+\cdots+T_M)/N$ bits of desired message per bit of download.


翻译:双盲 $T$- 私自信息检索( DB- TPIR) 使两个用户( 每个用户指定了 $1,\theta_ 2$, resp.) 能够有效地从两个指数标签的存储所有信息 $W (theta_ 1,\ theta_ 2, k_ 1\ n2, k_ 1\ n% 1, 2, k_\\ dots, k_ 1, k_ 2\\\\ int, k_\\\ in, 1, 2,\ cdolts, K_ 2\\\\\ 美元, 这样两个用户的指数将分别从任何存储的 $T_ 1, T_ 2$ coud 服务器中, 以两个指数为标签。 本文中提议了一个基于跨子空间校校校校校校校校校校校校校的 DBBLTB_\\\ MIL 计划, 在存储大量信息和绑定的服务器中, 所有的系统将扩展为$M- $xxxxxx, 每个用户- ial信息检索的 $xxxxxI1, 每个存储的 数据- MI1, 每个存储数据- m 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
45+阅读 · 2021年4月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
2012-2018-CS顶会历届最佳论文大列表
深度学习与NLP
6+阅读 · 2019年2月1日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2021年4月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
2012-2018-CS顶会历届最佳论文大列表
深度学习与NLP
6+阅读 · 2019年2月1日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员