Can one recover a matrix efficiently from only matrix-vector products? If so, how many are needed? This paper describes algorithms to recover structured matrices, such as tridiagonal, Toeplitz, Toeplitz-like, and hierarchical low-rank, from matrix-vector products. In particular, we derive a randomized algorithm for recovering an $N \times N$ unknown hierarchical low-rank matrix from only $\mathcal{O}((k+p)\log(N))$ matrix-vector products with high probability, where $k$ is the rank of the off-diagonal blocks, and $p$ is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix-vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive "peeling" procedure based on elimination, our approach uses a recursive projection procedure.
翻译:仅从矩阵- 矢量器产品中能否有效地回收一个矩阵? 如果是这样的话, 需要多少个? 本文描述了从矩阵- 矢量器产品中回收结构矩阵的算法, 如三对角、 托普利茨、 托普利茨类和低等级的矩阵产品。 特别是, 我们从仅$N\ times N$ 未知的低等级矩阵中获取一个随机化算法, 仅从 $\ mathcal{O}( (( k+p)\log( N))) 美元高概率的矩阵- 矢量产品中回收一个 。 美元是非对角区块的等级, $p$是一个小的过度抽样参数。 我们这样做的方法是仔细地为我们的矩阵- 矢量器产品构建随机化输入矢量器, 利用矩阵的等级结构。 现有的等级矩阵回收算法使用基于消除的递归性“ 访问” 程序, 我们的方法使用循环性预测程序。